We just launched Cubelets Console, a new way for you to play and learn with Cubelets. It’s awesome. Power up a few Cubelets and click the link on MacOS, Windows, or ChromeOS. There’s nothing to download and install!
If you’ve been playing with Cubelets for a while, you’ll be very aware that we’ve had a little ecosystem of different apps for different kinds of interaction. One for programming in C on a laptop, another one for Blockly, and the mobile-only app which does other things like Remote Control and Personality Swap. Now, Cubelets Console brings a ton of new functionality and interaction possibilities to laptops and desktops, at home or, when we get back to it, at school.
Console replaces the Blockly and C programming apps and lets you do both at the same time. It also lets you Personality Swap your Cubelets to change their behavior with pre-written programs. Most exciting for me, though, is the new Data Logger interface. Connect a Sense Cubelet or three and watch their block values change over time. Add an Inverse and watch the complementary graphs. See if your kid can make a sawtooth waveform with a distance sensor. Track temperature or light data and export it to a CSV or a Google Sheet. Experiment!
I’m at home this afternoon and I noticed that although the sun is streaming in a couple of south-facing windows, our little cactus was in the shade between the windows, a temporary dark spot as the sun tracks across the sky. I thought maybe I’d build a little self-driving car for the cactus. You know, like Uber for plants!
Cacti like to be in the sun, so I figured I’d start with a Drive Cubelet as the base and a couple of light sensors so that the robot knows where to go. But before I put a plant on top of anything, I knew I’d want to ease the back-and-forth motion of the robot so that it didn’t come to a jarring stop when it found light and bounce the plant right off. I thought it’d be elegant for the robot to slow its velocity along something like a sine wave. Sin() is a bit heavy for a microcontroller, so I found a web site that generated lookup values for a sine wave and tried pasting a few of those data values into a Blockly program (sine-down.cubelet) that sine-waves down from 127 (half speed) every few seconds. Then I found the magic of Console. I switched quickly back over to Data Logger to verify that my code was working and saw these little approximated sine waves.
Then I flashed the code into a Drive Cubelet and saw this:
Looking good. Next I attached a couple of light sensors and tried programming the Drive Cubelet as sort of a lopsided state machine. If a light sensor has light, then drive toward it for a half second, slow down, and begin again. It worked! The little platform is successfully moving the cactus to the brightest sunshine. It’d be fun to add a couple of distance sensors to make sure that the plant car doesn’t bump into anything or fall down the stairs, and maybe some down-low glow, but I’m pretty happy with this for now.
Where were we, anyway? Right, Console! Console is a huge upgrade to the high-ceiling Cubelets experience. I was just doing distributed robot programming using multiple languages and leveraging inter-robot messaging schemes. And it’s for kids! It’s super cool to be able to sketch out a program in Blockly and then pop into C to understand the exact code that got created. There are lots of ways to look at the same algorithm, and lots of ways to understand things. Give Console a try and let us know what you build.
Tag Archives: Cubelets
Need inspiration for some fun, STEM projects to do at home? Check out the new YouTube series “Make with me”! Join the Modular Robotics staff as we try out fun, challenging, robot activities that we can do around the house, like building this Hand Washing Timer robot:
Of course STEM at Home doesn’t need to be involved projects! Kids can learn a lot about robotics just by building their own Cubelets racing robots.
Whether it’s harnessing creativity by building robot seascapes with LEGO or figuring out how to code a Toilet Paper Ration Robot in Blockly, the “Make with me” videos have something for everyone.
Check it the whole playlist on YouTube and don’t forget to subscribe so you never miss a new video!
The goal at Governor Morehead School in Raleigh, North Carolina is to have all students “strive for the highest levels of educational excellence and integrity in all of life’s endeavors.” As a residential school for students who are blind or have limited vision, this goal presents unique challenges to their staff. That’s why Caitlin Powell, a Residential Life Trainer at Governor Morehead School (GMS), and Janet Perez, the Instructional Technology Specialist, were so excited to find a STEAM resource like Cubelets.
“Cubelets allow our students to explore, experiment, and engage in hands-on creative problem-solving, right out of the box,” Ms. Perez says. “I haven’t even had to add tactile indicators because most of the blocks can be identified by touch.”
Cubelets are utilized at GMS in a variety of ways, most notably in the library. The robot blocks serve as vehicles for students to think outside the box and explore their creativity. Students use their tactile and sensory skills to create robots that spin, roll, and produce light. They also control the movements of their robots using Bluetooth technology.
“Each week, we introduce a new Cubelet robot that does something different,” says Ms. Powell, “For example, we may introduce a noise projecting Cubelet. We teach our students how to explore and connect the Cubelet to utilize its proper function.”
Continue reading
It’s been over a year since we launched #CubeletsChat, our blog and email series for teachers by teachers. Every topic we write about comes from a question or conversation with an educator like you. Whether we’re highlighting some great resources for your sub binder or helping you dive deeper into the computational thinking skills that Cubelets can teach, #CubeletsChat is specifically for you.
Whether you’re new to the Cubelets community or are an adept looking for next steps with Cubelets, hopefully you’ll find a couple articles that meet your needs along your Cubelets journey.
For the Beginners: It’s easy to be intimidated by Cubelets when you first pull them out of the box. After all, they’re blocks…that teach computational thinking…but how?
Continue reading
I’m a pretty big fan of the Museum of Modern Art. It comes from my childhood. My Dad is a photographer, and one of his photos, a racing powerboat shot on a strip camera, is in the permanent collection. And my mom, for other reasons, thought MoMA was the bee’s knees and dragged me into the city a couple of times a year to traipse around the exhibits. When I was really little, I preferred the Museum of Natural History, but after a multi-year dinosaur (and Blue Whale) phase, I really started to like the work at MoMA, from the giant Jackson Pollock pieces to the outdoor sculpture garden to the Bell 47D1 helicopter hanging over the lobby. In my mom’s mind, MoMA symbolized the best of art and design, and I absorbed some of that feeling from her.
In 2011, Cubelets were included in an exhibit called Talk To Me, about how objects can mediate and moderate communication. It was an amazing feeling to stop by on a trip to New York and see them in the museum.
Now Cubelets are for sale at the MoMA store. If you want to give the gift of robot blocks for this holiday season, consider supporting one of the world’s finest cultural organizations while you’re at it and order them from the Museum of Modern Art!
As we incorporate STEAM opportunities into our classrooms, there are many different ways to scaffold an activity to meet our needs. Some projects lend themselves to student design from the very beginning, and others lend themselves to students solving a problem we’ve identified for them (like designing a maze-solving robot or a robot to help the blind). This balance is integral to exposing students to every step of the design process while also making sure we have time to address all the standards we need to cover.
But student motivation is a major factor in how efficiently we can work through material each year. One way to increase student motivation is to put students in the driver’s seat earlier, by introducing subjects with creative hooks and giving students the space to define the projects according to their understanding.
Every project students do requires a discussion of the criteria and constraints. Whether those are teacher-given or student-provided, criteria and constraints indicate how students will be assessed on their design.
Criteria are the requirements for a project. If any of the criteria are missing, then the design is incomplete.
Constraints are the limitations for a project. What will students not have access to? For instance, are there considerations about price, location, or size? Continue reading
Computer Science Education Week is December 9th – 15th this year. Are you ready for Hour of Code?!
Hour of Code started as a one-hour introduction to computer science, designed to demystify “code,” to show that anybody can learn the basics, and to broaden participation in the field of computer science. It has since become a worldwide effort to celebrate computer science, starting with 1-hour coding activities but expanding to all sorts of community efforts. This grassroots campaign is supported by over 400 partners and 200,000 educators worldwide.
The Hour of Code takes place each year during Computer Science Education Week. The 2019 Computer Science Education Week will be December 9-15, but you can host an Hour of Code all year-round. Computer Science Education Week is held annually in recognition of the birthday of computing pioneer Admiral Grace Murray Hopper (December 9, 1906).
Modular Robotics has posted three different lesson plans for you depending on which robotics kit you have available. Check out our lesson plans which are available in the Robotics & Circuits section of the Hour of Code index.
Cubelets Lighthouse Design Challenge
For students who are new to Cubelets, challenge them with our Cubelets Lighthouse Design Challenge. This lesson plan gives students an authentic reason to investigate each Cubelet in their set, and it gets them started building algorithms using the Inverse Cubelet. You’ll be impressed with how quickly students construct their understanding of Cubelets using this lesson. Plus,you can gather informal data about their understanding by asking some strategic questions from our Questioning Guide (found in our Cubelets Implementation Guide).Cubelets Variables and Block Values
For students who are already familiar with the basics of Cubelets, try introducing them to Variables and Block Values in their robot constructions! Variables in computer science are very different from variables used in math. Cubelets provide a tactile way to differentiate the two by leading discussions and investigations about Block Values and data flow between Cubelets within a robot construction. This lesson builds on the concept of Data Flow Diagrams, so if you want to get a head start, check out our Introduction to Data Flow Diagrams lesson! As always, our Educational Designer, Emily Eissenberg, is ready to support you if you have questions, just reach out to support@modrobotics.com.GoPiGo Robot Characters
(Just in case you missed it, Modular Robotics has partnered with Dexter Industries to bring our two product lines together. We’re so excited about this collaboration and we hope you are too!) Or, if you have a GoPiGo robot in your classrooms, we’ve also released a lesson plan about analyzing and creating characters with your robot. This lesson is special because it is a great example of how to overlay computer science vocabulary (e.g. decomposition and abstraction.) on top of literacy discussions. Students will analyze a character from a book they are reading, then plan for and write an algorithm that represents that character. Flash that to a GoPiGo robot and students’ programs will come to life! The great thing about introducing this lesson during Hour of Code? It can become a recurring part of your literacy workshop, encouraging students to strengthen their interdisciplinary connections. Modular Robotics is excited to join forces with code.org to support Hour of Code this year. If you would like to learn more about any of our products, visit www.modrobotics.com or email info@modrobotics.com.
For Texas’ Northside Independent School District, the learning doesn’t stop when the school day ends. No one knows that better than Mario Adame, a Program Specialist, and Monica Garza, a Family Engagement Specialist. With their efforts, Cubelets were added to NISD campuses in a variety of capacities, most notably as part of a TEA Grant Funded innovative after-school program called the Learning Tree.
The Learning Tree program is currently offered to students in NISD’s 79 elementary and 20 middle schools. Over 6,000 students participate in the after-school program. The students are given the option of participating in activities of their own choice, such as Culinary, Yoga, Mindful Coloring, and Upcycle. However, all students who participate in the program use Cubelets and they have been a huge hit!
“Once [the students] got to know the Cubelets, they became very excited. You could easily observe their enjoyment and comfort level increase.” Mr. Adame and Ms. Garza go on to say that when the students use Cubelets, “you see smiling faces accompanied with giggles and laughter.”
Continue reading
We’re about to ship our one millionth Cubelet! Back when the first little robot left our assembly line in 2012, the thought of selling one thousand Cubelets gave us a thrill. And because of your continued support, we’ve made it all the way to one million!
To say thank you to the thousands of educators, parents, and enthusiasts that have made this momentous milestone possible, we’ve included a free gift with every Cubelets purchase this November and December.
No coupons or rebates necessary — your gift will be added automatically to your purchase. See the chart below for details:
Shop now >
Free Gift Terms & Conditions To receive your free gifts, purchases must be made directly through Modular Robotics or modrobotics.com. Orders must be placed to ship before December 31, 2019. Order and gift must ship to the same address. Offer valid from Nov. 4 to Dec. 31, 2019.
2019 has been a special year for the Cubelets team. This past September, we added new members to our educational robot family with the addition of Dexter Industries. We’re also closing in on shipping our one millionth Cubelet, and preparing to celebrate that huge milestone for Modular Robotics.
And to top it all off, 2019 has been one of the most decorated years in Cubelets’ history!
No, we’re not talking about all the cool, artistic robots we’ve seen on Twitter. We’re talking about awards!
One of the coolest awards we added to the collection this year was from Fast Company. Our Curiosity Set is an Honoree in the Learning Category of the 2019 Innovation by Design Awards. Fast Company had over 4,300 entries for their Innovation by Design Awards this year, making this honor even bigger!
Continue reading